
F Fermi National Accelerator Laboratory

FERMILAB-TM-1997

An Imaginary-t Lattice With Dispersion-Free Straights
for the 50 GeV High-Intensity Proton Synchrotron

King-Yuen Ng

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

February 1997

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.



1

TM 1997

AN IMAGINARY-t LATTICE WITH

DISPERSION-FREE STRAIGHTS FOR THE

50 GeV HIGH-INTENSITY PROTON

SYNCHROTRON

King-Yuen Ng

Fermi National Accelerator Laboratory, Batavia, IL 60510

(February, 1997)

Abstract

During polarized beam experiments, the 50 GeV proton synchrotron,

proposed by the Institute of Nuclear Study of Japan, requires zero-dispersion

straight sections. This will be implemented by turning on a special excitation of

the quadrupoles resulting in a dispersion wave through the arcs of the machine.

Aside from the inconvenience of the power supply, this special excitation also

brings about unwanted high betatron functions and high dispersion functions,

which will eventually limit the performance of the accelerator at high intensities.

In this paper, dispersion suppressors are introduced. A new preliminary lattice

that contains two straight sections with nonzero dispersion and two straight

sections with zero dispersion is presented. The whole ring remains having a

reasonable imaginary t. The horizontal and vertical betatron functions have

been kept to below 32.4 m and dispersion function between �0:52 and 1.86 m.

The number of 6.2 m dipoles is reduced from 96 to 92, and the dipole �eld at

50 GeV will become slightly above 18 T. Some analysis of the new lattice is

discussed.
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I INTRODUCTION

In order to reduce beam loss, the 50-GeV proton synchrotron of the Japan Hadron

Project (JHP) designed by the Institute for Nuclear Study of Japan (INS) will operate

with an imaginary-t [1]. The exible momentum-compaction (FMC) modules [2] in

the lattice are roughly 3 FODO-cell long. The lattice is 4-fold symmetric. Each

quadrant consists of 6 FMC modules and a long straight section of about 60 m in

length. The dispersion in the long straight section varies between �0:71 and 0.58 m.

Although the dispersion is small, it is always more appealing to have zero-dispersion

straights. This is especially true when the synchrotron is accelerating polarized beam.

To obtain zero dispersion in one straight section and another on the other side of the

ring, a special excitation of the quadrupoles needs to be turned on so as to allow a

dispersion wave and a betatron wave to ow through half of the ring. Aside from

the inconvenience of having a special power supply, this excitation also brings about

unwanted high betatron functions and high dispersion functions, which will eventually

limit the performance of the accelerator at high intensities. In this paper, we suggest

the introduction of dispersion suppressors. A new preliminary lattice that contains

two straight sections with nonzero dispersion and two straight sections with zero

dispersion is presented.

II DISPERSION SUPPRESSOR

The standard FMC module of the JHP ring is shown in Fig. 1 with its lattice

elements, betatron functions and dispersion. To study its dispersion property, we go

to the normalized dispersion space (�-�), where

� =
q
�xD

0 � �
0

xD

2
p
�x

=
p
2J cos� ; � =

Dp
�x

=
p
2J sin� : (2.1)

Here, D and D
0 are, respectively, the dispersion function and its derivative with

respect to the longitudinal coordinate s, �x and �
0

x are, respectively, the horizontal

betatron amplitude function and its derivative, J is the dispersion action,
p
2J is the

amplitude of the normalized dispersion vector, and � is identical to the horizontal

Floquet betatron phase advance in the region where there is no dipole. The dispersion

function satis�es the second-order inhomogeneous di�erential equation,

D
00 +Kx(s)D =

1

�(s)
; (2.2)
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Figure 1: The lattice structure of the standard FMC module of the JHP ring.

where �(s) is the local radius of curvature, and

Kx =
1

�2
� 1

B�

@By

@x
; (2.3)

is the sum of the quadrupole and centrifugal focusing. In the thin-element approx-

imation, Eq. (2.2) indicates that �D = 0 and �D0 = � in passing through a thin

dipole with bending angle �. Therefore, in the normalized �-� space, the normalized

dispersion vector changes by �� =
p
�x� and �� = 0. Outside the dipoles (� =1),

the dispersion function satis�es the homogeneous equation, so that J is an invariant,

with � and � satisfying �2+�2 = 2J , which is a circle, and the normalized dispersion

vector advances by an angle � equal to the betatron phase advance. The dispersion
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Figure 2: The standard FMC module of the JHP ring plotted in the normalized

dispersion plane.

plot of the FMC module in Fig. 1 is given in Fig. 2. We see that the module starts

o� from the quadrupole QDX with zero �0x and D
0. The dispersion is �0:5213 m.

The �rst dipole BB is represented by a long straight line pointing mostly to the

right. Note that this line is not exactly horizontal, because the dipole is far from

a thin element and there is a phase advance associated. If we chop up the dipoles

into smaller elements, this straight line will be curved. However, it will still be quite

di�erent from the arc of a circle with center at the origin of the plot. The deviation

just represents the angle-bending nature of the dipole. Next come the quadrupoles

QF and the second dipole BB. After that there is no more dipole and the plot until

the center quadrupole QFX just follows the arc of a circle centered at the origin. The

other half of the module is just the mirror image of the �rst half.

In order to be a dispersion suppressor, we must alter the lattice so that the end of
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the module stops precisely at the origin of the dispersion space. To accomplish this, we

must �rst make the radius of the arc smaller in the upper half of the dispersion plane,

and second we must use an exact amount of dipole to bring the module to D = 0 and

D
0 = 0 at the point when the arc reaches roughly 180�. The suppressor constructed

in this way is shown in Fig. 3 and its dispersion plot in Fig. 4. The construction

Figure 3: The lattice structure of the dispersion suppressor.

starts from the pulling out the second dipole, so that the module continues with a

much smaller arc until the quadrupole QFFX. To facilitate lattice computation, we

treat this as a point of symmetry, that is with �
0

x = �
0

y = D
0 = 0, although these

constraints are not necessary. After that we continue as in the case of the standard

FMC module with the exception that the last dipole, called B4, is shortened so that

the module lands exactly at D = D
0 = 0. In order not to deal with a fractional
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Figure 4: The dispersion suppressor plotted in the normalized dispersion plane.

dipole, the amount B4 has been shortened, called B4E, is placed in the space where

the second dipole has been pulled out. In other words, one normal dipole has been

pulled out, and another normal dipole has been chopped up into two parts B4 and

B4E. The chopping up of a normal dipole for the dispersion suppressor seems to

be inevitable. This is very similar to the situation of the dispersion suppressor in

a FODO-cell lattice, where one can avoid chopping up dipole only when the phase

advance of each cell is exactly �=3. In this present dispersion suppressor, B4 and B4E

have been made 83% and 17% of the normal bending dipole BB.

As shown in Fig. 3, the dispersion suppressor is not very much di�erent from the

standard FMC module, aside from the fact that one dipole is missing and that the

dispersion winds down to zero. The suppressor has a length of 48.7269 m, max-

imum/minimum dispersion of 1:8632= � 0:5148 m, maximum/minimum horizontal

betatron function 31.84/4.22 m and maximum/minimum vertical betatron function



7

32.32/7.17 m. The vertical and horizontal tune advances are 0.721/0.545, which are

very close to the 0.740/0.531 for the standard FMC module. Best of all, this suppres-

sor has also an imaginary transition gamma of t = 69:05i, so that the whole ring

can still retain its imaginary-t property.

The whole ring has now only 92 dipoles each of length 6.2 m. Since the beam

particles are to be accelerated to the maximum total energy of 50 GeV, the maximum

bending �eld of the dipole becomes 1.837 T, which is high but is still possible.

III LONG STRAIGHT SECTIONS

There will be two long straight sections that are dispersion-free and two that are

not. The long straight section that has nonzero dispersion joins two standard FMC

modules together. This is the same type of long straight sections in the original

design of the JHP synchrotron. In this design, this straight is illustrated in Fig. 5,

with a length chosen to be 61.2524 m. In the dispersion plane of Fig. 2, this long

straight section is just represented by a circle centered at the origin, starting from the

quadrupole QDX and back to the same quadrupole. This can be understood easily

from Eq. (2.2), since no dipoles are present.

The zero-dispersion straight shown in Fig. 6 can be constructed in the same way.

It has a length of 62.2938 m. Since both the dispersion and its derivative are zero,

this straight is represented as only one dot, namely the origin in the dispersion plane

of Fig. 4.

Now the whole ring can be assembled. We start from the center of the non-

dispersion-free straight section, then 5 standard FMC modules, the dispersion sup-

pressor, and then the dispersion-free long straight section. We make a mirror reec-

tion about the center of the dispersion-free straight to arrive back to the center of the

other non-dispersion-free straight. This complete one half of the ring. The SYNCH

input �le for the lattice is listed in the Appendix.

IV SEXTUPOLE CORRECTION

In general, quadrupoles of the FMC modules are of larger integrated strength than

those in the usual FODO lattice. As a result, larger natural chromaticities will be
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Figure 5: The lattice structure of the long straight section with dispersion.

generated and sextupoles of larger strengths will be required for their corrections. The

corrections are mainly made by the two families of sextupoles SF and SD as shown in

Figs. 1 and 3. There each SF or SD is represented by 5 thin sextupoles in the lattice

code. Just after the entrance defocusing quadrupole of each FMC module, there is

a third family SX, which is used for �ne adjustment. For example, the chromaticity

corrections have been made by setting the strength of each SX to be 0.105 m�2 and

each of the thin SF and SD 0.0572 m�2 and -0.0933 m�2, respectively. The resulting

amplitude dependence on tunes are

�x = 21:0954 + 130
�x

�
� 116

�y

�
;
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Figure 6: The lattice structure of the long straight section that is dispersion-free.

�y = 15:4433 � 116
�x

�
+ 134

�y

�
; (4.1)

where the emittances �x and �y are measured in m. The magnitude of the third

family of sextupoles has been varied so as to make the 3 di�erent detunings as close

as possible in magnitude and that they have the desirable signs. We see that with

�x = �y = 50� � 10�6 m, the largest tune spread is only 0.0067, which is certainly

acceptable for a non-storage ring [4].

Another measure of nonlinearity introduced by the correction sextupoles is the

single-particle smears, Sx and Sy, which are de�ned as the fractional rms distortion

of the Poincar�e torus at any phase advance  x in the horizontal and  y in the vertical
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phase spaces. In other words,

Sx( x;  y) =

 h(�Ax)2i
A2
x

!1=2

; Sy( x;  y) =

 h(�Ay)2i
A2
y

!1=2

: (4.2)

where the amplitudes Ax and Ay are related to the emittances through

�x =
�A2

x

�0

; �y =
�A2

y

�0

: (4.3)

Here �0 is just some reference betatron function for dimensional purpose and can

be set arbitrarily to 1 m for convenience. The single-particle smears [3] can then

be computed easily in terms of the 5 pairs of distortion functions (B1; A1), (B3A3),

( �B; �A), (B+; A+), and (B�; A�) [5, 6, 7, 8]:

S
2

x = 1

2
A2

x(A
2

3
+B

2

3
+A

2

1
+B

2

1
)� 2A2

y(A1
�A+B1

�B)

+
A4

y

2A2
x

(A2

+
+B

2

+
+A

2

�
+B

2

�
+ 4 �A2 + 4 �B2) ;

S
2

y = 2A2

y(A
2

+
+B

2

+
+A

2

�
+B

2

�
) :

(4.4)

The distortion functions are, of course, functions of the sextupoles, whose integrated

strengths are

sk = lim
`!0

2
4
 
�
3

x

�0

!1=2
B
00

y `

2(B�)

3
5
k

; �sk = lim
`!0

2
4
 
�x�

2

y

�0

!1=2
B
00

y `

2(B�)

3
5
k

; (4.5)

which depend also on the reference betatron function �0. The horizontal and ver-

tical smears are plotted in Fig. 7. We see that the rms vertical smear reaches only

about 0.1%, which is very small, and the horizontal smear is still smaller. The full

smears will be roughly
p
2 times the rms values, which are much less than the 7%

nonlinear criterion of the former Superconducting Super Collider [4]. We also see that

the smears are step-like, constant over a region and exhibiting a jump only when a

sextupole is encountered.

V BETATRON BEATINGS

In this FMC-type lattice, it is impossible to place a sextupole beside every qua-

drupole to correct for local chromaticities. As a result, particles with a momentum
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Figure 7: The horizontal and vertical single-particle smears for one quarter of the

accelerator ring.

o�set � will see a di�erent set of betatron functions. The fractional changes in the

betatron functions per unit momentum deviation are called \beat factors". At phase

advance  , they are given by [9]

��

�

�����
 

= � 1

2 sin 2��

Z  +2��

 
k( 0)�2( 0) cos 2(�� +  �  

0)d 0 : (5.1)

In the above, the phase advance  , �eld gradient k, and tune � assume their horizontal

or vertical values for the horizontal or vertical beat factor.

The beat factor can be made complex by introducing the imaginary part

� d

d 

��

2�

�����
 

= � 1

2 sin 2��

Z  +2��

 
k( 0)�2( 0) sin 2(�� +  �  

0)d 0 : (5.2)
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If we denote the real part by B and the imaginary part by A, the vector (B;A) rotates

at a tune of 2� when there is no �eld gradient. Whenever it passes through a �eld

gradient k of in�nitesimal length `, A increases by

�A = ��k`
2

(5.3)

while B remains unchanged. Thus the magnitude of the beat vector is an invariant

unless it passes through a �eld gradient. The contribution to the beat factors, how-

ever, does not come merely from the �eld gradient of the quadrupoles alone; there are

also contributions from the sextupoles, the centripetal force of the dipoles as well as

the edges of the dipoles. The beat factors are plotted in Fig. 8, and the magnitudes

of the beat vectors in Fig. 9. The largest beat factor per unit momentum o�set

Figure 8: The horizontal and vertical beat factors for one quarter of the accelerator

ring.



13

Figure 9: The magnitudes of the horizontal and vertical beating vectors for one

quarter of the accelerator ring.

is around 25. Considering that the momentum spread of the beam is only 0:5% at

injection, the relative change in betatron function is at the most 10% which is not

excessive at all.

The harmonic analysis of the beat factors is also important, because it gives us

a clue to reduce the beat factors. For a left-right symmetric lattice, choosing the

point of symmetry as the point having zero phase advances, the Courant-Synder Jp's

become real. and can be expanded as

Jp =
Z ��

���
k( 0)�2( 0) cos

p 
0

�
d 

0

: (5.4)
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Then each beat factor can be written as

��

�

�����
 

= � J0

��
� 2�

�

X
p>0

Jp cos
p 0

�

4�2 � p2
: (5.5)

Each half of the INS lattice has a left-right symmetry except for the third family

of sextupoles which is placed only at one side of the entrance D-quadrupole of each

module. However, the asymmetry is small and so are the ImJp's. Therefore, we can

assume the Jp's to be real.

Since the lattice is now two-fold symmetric, Jp vanishes unless p is a multiple of 2.

By de�nition, J0 = 0 for both horizontal and vertical because the chromaticities are

zero. Some of the lower-order Jp's have been computed and are listed in Table I. The

2nd and 6th columns show the contributions of the quadrupoles, while the 3rd and

7th columns the contributions of the sextupoles. The total contributions including

those from the dipoles are listed in the 4th and 8th columns. In the 5th and 9th

columns�, we list the contributions of Jp's to their respective beat factor per unit

momentum o�set as is indicated in each term of the summation of Eq. (5.5) but not

including the cosine term.

We notice that the J0's are not exactly zero. This is because Eq. (5.5) is only

�rst order; for example, the betatron function used inside the integral is only the

unperturbed one. Nevertheless, this gives us a measurement of the error involved.

The contributions of the sextupoles are exactly �4� times the chromaticities.

We see that the sextupoles do produce beat waves in the harmonic space. This

is because they have not been placed at the proper phase advances for con�nement

or cancellation. The tunes of the lattice are �x = 21:0954 and �y = 15:4433, so

that the important Fourier components are p = 42 for the horizontal and p = 31

for the vertical. Because of the two-fold symmetry of the lattice p = 31 does not

occur. As for p = 42, the horizontal beat factor is not large because 2�x is still far

from 42. However, we do see the beat waves exhibit large magnitudes at p = 28 and

p = 56. This comes about because each of the two straight sections has a vertical

tune advance of � 0:60 which is not too far from the vertical phase advance of 0.53

�in Table I of Ref. 10, the numbers in the 5th and 9th columns are incorrect, They should be

reduced by a factor of 4.
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Table I: The horizontal and vertical Jp's of the INS lattice with dispersion

suppressors, showing their contributions from the quadrupoles and sextupoles.

Horizontal Jp Vertical Jp

p quads sext. total ��=� quads sext. total ��=�

0 �312:94 314:25 0:32 0:00 �261:12 265:00 2:78 �0:03

2 �2:09 8:29 6:24 �0:05 �6:14 10:66 4:41 �0:05

4 2:67 �75:48 �72:64 0:55 3:27 �66:49 �62:92 0:66

6 �1:53 �1:85 �3:35 0:03 �4:80 �1:09 �5:92 0:06

8 1:84 �57:84 �55:87 0:44 2:27 �48:40 �45:95 0:51

10 �0:48 �13:89 �14:35 0:11 �2:90 �12:32 �15:17 0:17

12 0:60 �38:61 �37:93 0:31 1:69 �34:09 �32:34 0:39

14 1:02 �17:37 �16:35 0:14 �1:44 �11:96 �13:33 0:17

16 �0:89 �27:41 �28:27 0:25 2:26 �29:05 �26:77 0:38

18 3:16 �3:08 0:06 0:00 �0:97 �1:64 �2:58 0:04

20 �2:33 �25:93 �28:25 0:27 3:70 �23:93 �20:22 0:36

22 7:00 34:65 41:66 �0:43 �0:98 5:68 4:69 �0:10

24 �2:48 �21:46 �23:94 0:27 3:81 2:21 6:03 �0:16

26 20:41 136:40 157:02 �1:91 0:20 �2:01 �1:82 0:06

28 37:47 237:37 275:37 �3:71 �16:50 178:65 162:33 �9:39

30 �32:55 �177:80 �210:80 3:22 �5:44 37:26 31:91 �5:81

32 �19:48 �99:22 �118:91 2:11 21:13 �78:39 �57:46 �8:07

34 �7:96 �21:06 �29:08 0:63 2:60 �3:02 �0:39 �0:02

36 �17:37 �57:92 �75:46 2:09 12:10 �19:49 �7:48 �0:21

38 �4:86 0:74 �4:09 0:16 6:41 �7:68 �1:31 �0:03

40 �16:10 �24:01 �40:22 3:00 6:61 �2:91 3:72 0:06

42 �5:94 9:72 3:85 �3:22 8:40 �6:06 2:25 0:03

44 �13:25 2:38 �10:91 �0:94 1:54 1:70 3:31 0:03

46 �10:72 30:29 19:66 0:79 8:11 �4:79 3:25 0:03

48 �8:45 14:10 5:65 0:14 �4:70 �2:50 �7:17 �0:05

50 �21:04 79:26 58:30 1:09 6:25 �3:09 3:16 0:02

52 �2:66 13:46 10:80 0:16 �15:97 �28:71 �44:72 �0:25

54 �50:08 206:72 156:67 1:85 3:69 4:46 8:20 0:04

56 �7:97 49:03 41:06 0:41 �53:71 �156:79 �210:63 �0:95

58 105:08 �395:70 �290:43 �2:46 �29:08 �82:47 �111:54 �0:46

60 21:14 �39:80 �18:63 �0:14 46:91 204:55 251:55 0:93

62 5:01 1:08 6:09 0:04 1:98 48:54 50:54 0:17
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for each FMC module. On the other hand, their horizontal tune advances are 1.00

and 0.70, respectively, for the straights with dispersion and the one without. They

average out to roughly the horizontal tune advance of a FMC module. Thus, the

contributions of the sextupoles add up. As a result, there appears to be roughly a

7-fold symmetry in a superperiod. To reduce this contribution, the vertical phase

advance of the straight section must be increased.

VI DISCUSSIONS

(1) One disadvantage of the dispersion-free lattice is the high bending �eld of the

dipoles. There are ways to overcome this.

The easiest way is to lower the top operation energy of the machine. For example,

acceleration up to 49 GeV will lower the peak bending �eld of 1.837 T to 1.800 T.

We notice that the peak �eld gradients of the quadrupoles are of the order of

0:1(B� Tm) Tm�1 = 16:6 Tm�1. We can push the �eld gradient to a higher value

and thus reducing the length of the quadrupoles. The length of each dipole can be

lengthened accordingly. If we can increase the length of a dipole from 6.2 m to 6.3 m,

for example, the maximum bending �eld will decrease to 1.808 T.

The main ring has a circumferential length of 17 rf wavelengths and the booster 4

rf wavelengths. If we increase the circumference of the main ring to 18 rf wavelengths,

this amounts to an increase of 5.9%. With proper optimization, we can even pull out

4 more dipoles to make way for two more dispersion suppressors, so that all the long

straight sections will be dispersion-free.

(2) One may not like the idea of chopping up a normal bending dipole into 2

halves in the dispersion suppressor. Unlike the FODO lattice, the ratio of the two

halves is a little bit more exible here, because we have more quadrupoles to play

with. For example, it may be possible to divide that dipole up into the ratio of 2:1.

Thus, if we are using 3 dipoles for each half FODO cell, there will not be any dipole

chopping at all, although dipole lengths of 2 m are not economical.

(3) There may have been too many di�erent types of quadrupoles used in this

design, for example, some special ones in the dispersion suppressors and some special

ones in the dispersion-free straights. Here, we have been using quadrupoles all with

the same �eld gradient, except for the QDX at the entrance of the standard FMC
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module and QFX at the center of the module. Our design has been a very rough one,

and we do believe that with careful optimization, the number of special quadrupoles

can be reduced.

(4) For this design, 2�y + �x = 51:982 is too close to the third integer resonance.

We have exactly the same situation for the original INS design without dispersion

suppressors. However, we believe that this resonance can be avoided by a more

careful design.

(5) The properties of the smears and beat factors are very similar to those of the

original INS lattice. Therefore Sect. IV and V should be compared with the analysis

made in Ref. 10.
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APPENDIX

SYNCH input �le

MI_D RUN

C

C INS MAIN RING with Dispersion-free Straights

C December, 1996

SIZE 7

.----------------------------+-------------------------------------------------

. FACT is fraction of a whole dipole to be placed

. at end of dispersion suppressor

FACT = 0.83

. Quadrupoles for FCM

.

QDXL = 0.7500

QFXL = 1.0000

QFL = 0.7500

QDL = 0.7500

GDX1 PARA 6.99753368-2

GFX1 PARA 1.11841794-1

GF1 PARA 7.76223575-2

GD1 PARA 7.65636939-2

GDX = GDX1 / QDXL

GFX = GFX1 / QFXL

GF = GF1 / QFL

GD = GD1 / QDL

PRNT 1 5 GDX GFX GF GD

QDX MAG QDXL -GDX 1.

QFX MAG QFXL GFX 1.

QF MAG QFL GF 1.

QD MAG QDL -GD 1.

. Dipole

. The normal dipoles are called BB, the one at the end of

. suppressor B4 and the left over part is B4E
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NB = 92. / 2.

ANG = PI / NB

PRNT 1 5 ANG

BL = 6.20

BB MAG BL 0. BL ANG $

.

FACT1 = 1.00 - FACT

BL4 = BL * FACT

BL4L = BL * FACT1

ANG4 = ANG * FACT

ANG4L = ANG * FACT1

B4 MAG BL4 0. BL4 ANG4 $

B4E MAG BL4L 0. BL4L ANG4L $

. Sextupoles

SDS PARA -8.9965455-2

SFS PARA 5.8884901 -2

SXS PARA -0.105

SD SXTP 0.0 SDS 1.

SF SXTP 0.0 SFS 1.

SX SXTP 0.0 SXS 1.

. Markers

REF DRF 0.0

RE1 DRF 0.0

RE2 DRF 0.0

RE3 DRF 0.0

RE4 DRF 0.0

RE5 DRF 0.0

ARST DRF 0.0

. Drifts

LBQ DRF 0.55

LBQ2 DRF 0.75

LS DRF 5.71875

LSQD DRF 0.2

LSQF DRF 0.2

LS2S DRF 2.85

LDS1 DRF 0.1
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LDS2 DRF 0.2

LGAP DRF 0.1

GAP DRF 1.

LB DRF 0.275

. Sextupoles Insertions

DTH BML LDS1 SD LDS2 SD LDS2 SD LDS2 SD LDS2 SD LDS1

FTH BML LDS1 SF LDS2 SF LDS2 SF LDS2 SF LDS2 SF LDS1

XTH BML LB SX LB

. FMC Module and Arc

MOD1 BML XTH BB LBQ2 QF QF LBQ BB LBQ2 QD QD

LSQD DTH LS2S FTH LSQF QFX REF

MOD2 BML QFX LSQF FTH LS2S DTH LSQD QD QD LBQ BB

LBQ2 QF QF LBQ BB LBQ2

FMC BML QDX MOD1 MOD2 QDX

. CYC FMC AMPL SF SD .19204 .15919

CYC FMC AMPL SF SD 0.0 0.0

. From FMC, compute the matching betax, betay, and disp

.FMC MMM FMC

BEX BETA 2 .FMC

BEY BETA 12 .FMC

DISP BETA 5 .FMC

ALX = 0.

ALY = 0.

PRNT 1 5 BEX BEY DISP

BETO IBET 0.0 BEX ALX 0.0 DISP 0.0

0.0 BEY ALY 0.0 0.0 0.0

. Insertion Straight

. Quadrupoles for Straights

SBR0 SUB

LS1 DRF 6.1962572

LS2 DRF 5.9013912
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LS3 DRF 6.1054984

LS4 DRF 5.6202491

FS1L = .86167133

DS1L = .76736325

FS2L = .98869637

DS2L = .81734213

QFS1 MAG FS1L GF 1.

QDS1 MAG DS1L -GD 1.

QFS2 MAG FS2L GF 1.

QDS2 MAG DS2L -GD 1.

INS1 BML QDX

LS1 QFS1 QFS1 LS2 QDS1 RE5 QDS1

LS3 QFS2 QFS2 LS4 QDS2 REF

TB0 TRKB INS1 BETO

END

SOLV 5 8 SBR0 TB0 0REF 99999 -10 0

AX REF 0.0 .000001

AY REF 0.0 .000001

DX REF 0.0 .000001

BY RE5 32.3 .03

S REF 30.6262 .00000001

LS1 1 5.00 6.20 .001

LS2 1 5.00 6.20 .001

LS3 1 5.00 6.20 .001

LS4 1 5.00 6.20 .001

FS1L 1 .70 1.10 .001

DS1L 1 .70 1.10 .001

FS2L 1 .70 1.10 .001

DS2L 1 .70 1.10 .001

INS2 BML -1 INS1

.INS2 BML QDS2

INSF BML INS1 INS2 FMC

CYC INSF AMPL SF SD 0.0 0.0

. Dispersion Suppressor

SBR1 SUB

LBB DRF 4.9529547

LSS DRF 2.9847822
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FFXL = 1.0581615

DDL = .75640644

FFL = .75182717

QFFX MAG FFXL GF 1.

QDD MAG DDL -GD 1.

QFF MAG FFL GF 1.

MOD3 BML QDX XTH BB LBQ2 QFF QFF LBQ B4E LBB LBQ2

QDD QDD LSQD DTH LSS FTH LSQF QFFX REF

TB1 TRKB MOD3 BETO

END

SOLV 3 5 SBR1 TB1 0REF 99999 -10 0

DX REF 0.0 .000001

AX REF 0.0 .000001

AY REF 0.0 .000001

LBB 1 1.0 6.5 .0001

LSS 1 1.0 3.0 .0001

FFXL 1 0.06 1.2 .0001

DDL 1 0.07 1.2 .0001

FFL 1 0.07 1.2 .0001

SBR2 SUB

F1Z = 2.1247714

F2Z = .45839046

F3Z = 1.2895852

F4Z = .35937249

LQD1 = .78683700

LQF1 = .79189430

LQDM = .76677618

F1 DRF F1Z

F2 DRF F2Z

F3 DRF F3Z

F4 DRF F4Z

QD1 MAG LQD1 -GD 1.

QF1 MAG LQF1 GF 1.

QDM MAG LQDM -GD 1.

MOD4 BML QFFX LSQF FTH F1 DTH LSQD QD1 QD1 F2 BB

LBQ2 QF1 QF1 F3 B4 F4 QDM RE1

MISS BML MOD3 MOD4

TB2 TRKB MISS BETO

END
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SOLV 5 7 SBR2 TB2 0RE1 99999 -10 0

X RE1 0.0 .00000001

DX RE1 0.0 .00000001

AX RE1 0.0 .00000001

AY RE1 0.0 .00000001

BY RE1 32.3155669.0000001

F1Z 1 1.8 3.5 .001

F2Z 1 0.10 1.5 .001

F3Z 1 0.10 1.5 .001

F4Z 1 0.2 1.6 .001

LQD1 1 0.2 1.0 .001

LQF1 1 0.7 1.3 .001

LQDM 1 0.7 1.1 .001

REV BML -1 MISS

SUPP BML MISS REV

CYC SUPP AMPL SF SD 0.0 0.0

. Making Zero-Dispersion Straight

. Compute Twiss functions at matching point

SSIM BML REV MISS

SSI MMM SSIM

BEX BETA 2 SSI

BEY BETA 12 SSI

DISP BETA 5 SSI

PRNT 1 5 BEX BEY DISP

ALX = 0.

ALY = 0.

BET1 IBET 0.0 BEX ALX 0.0 -DISP 0.0

0.0 BEY ALY 0.0 0.0 0.0

SBR3 SUB

F5 DRF 7.2821746

F6 DRF 6.4229531

F7 DRF 5.9297456

F8 DRF 6.0165902

LQD3 = .65887323

LQF3 = .68612193

LQD4 = .69295034

LQF4 = .68687394

LQD5 = .70467076
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QD3 MAG LQD3 -GD 1.

QF3 MAG LQF3 GF 1.

QD4 MAG LQD4 -GD 1.

QF4 MAG LQF4 GF 1.

QD5 MAG LQD5 -GD 1.

STDF BML QD3 F5 QF3 QF3 F6 QD4 RE3 QD4 F7

QF4 RE4 QF4 F8 QD5 RE2

TB2 TRKB STDF BET1

END

SOLV 5 9 SBR3 TB2 0RE2 99999 -10 0

AX RE2 0.0 .00000001

AY RE2 0.0 .00000001

S RE2 31.14690 .00000001

BX RE4 25.3966999.0000001

BY RE3 25.3552107.0000001

F5 1 5.0 10.0 .1

F6 1 5.0 10.0 .1

F7 1 5.0 10.0 .1

F8 1 5.0 10.0 .1

LQD3 1 0.5 1.1 .01

LQF3 1 0.5 1.1 .01

LQD4 1 0.5 1.1 .01

LQF4 1 0.5 1.1 .01

LQD5 1 0.5 1.1 .01

STDR BML -1 STDF

DFST BML STDF STDR

CYC DFST

ARCR BML 5( FMC ) MISS

SUPR BML INS2 ARCR STDF

SUPL BML -1 SUPR

SUP BML SUPR SUPL

RING BML SUP SUP

CYC SUP AMPL SF SD 0.0 0.0

. CYC RING AMPL SF SD 0.0 0.0

STOP
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